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Abstract 

The restrictions imposed by both chemistry and three- 
dimensional space on the structures of inorganic crystals 
can be analysed using the bond-valence model and 
space-group theory. The bond-valence model is used to 
construct a bond graph (connectivity table) from which 
the multiplicities and possible site symmetries of each 
atom can be assigned. These are matched to Wyckoff 
positions of the three-dimensional space groups, select- 
ing the matching space group with the highest possible 
symmetry. High-symmetry structures such as NaC1, per- 
ovskite and garnet are readily derived from the chemical 
formula and, with a little more effort, the same can be 
done for structures of intermediate symmetry such as 
wurtzite, corundum and rutile. For other compounds a 
relationship between the site symmetry and the mul- 
tiplicity of an atom can severely restrict the possible 
structures. 

1. Introduction 

The bonding topology of every solid must conform to 
both the laws of chemistry and the restrictions of three- 
dimensional space. Unless both sets of constraints are 
satisfied the solid cannot exist. The interplay between 
them is the subject of this paper, the laws of chemistry 
being expressed through the bond-valence model of 
inorganic chemistry (Brown, 1992) and the laws of three- 
dimensional space expressed through the space-group 
theory of crystals (International Tables for Crystallog- 
raphy, 1983, Vol. A). 

An inorganic crystal can be represented by an infinite 
network of atoms connected by bonds. The network, 
which must conform to one of the 230 three-dimensional 
space groups described in International Tables for Crys- 
tallography (1983, Vol. A), can be decomposed into 
two parts, the topology of the asymmetric unit and the 
symmetry operators of the space group. If both can be 
found separately, they can be combined to generate the 
infinite bond network. 

The asymmetric unit, which describes short-range 
order, is determined by the laws of chemistry, namely 
the rules that determine which atoms bond to each 
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other. In practice, when analysing a structure, it is 
more convenient to start, not with the asymmetric unit, 
but with the chemical formula unit which may contain 
several asymmetric units if the atoms lie on special 
positions. Any crystallographic symmetry used by the 
formula unit must, of course, be part of the symmetry of 
the space group and, therefore, the compound can only 
crystallize in a space group that contains this symmetry. 
Hence, we find that the chemistry, which determines 
the short-range order, can influence the choice of space 
group which determines the long-range order. A careful 
examination of the chemistry can therefore be used to 
explore which space groups are compatible with the 
chemistry and thus what long-range order is possible. 

For a given chemical composition, plausible local 
environments for each atom can be predicted using 
the bond-valence model. These are used to determine 
the symmetry and multiplicity of each atom in the 
formula unit and to find those space groups that have 
matching Wyckoff positions. An examination of the 
candidate space groups starting with those of highest 
symmetry can be used to explore possible structures and 
will, in many cases, show why a particular compound 
cannot adopt a high-symmetry structure. In all cases the 
procedure gives insights into the factors that determine 
the symmetry, space group and long-range order of 
different compounds. 

To assist the reader, the salient features of the bond- 
valence model are reviewed in §2. The constraints 
introduced by space-group theory are derived in §3 and 
their application is described in §4. Finally, some worked 
examples are given in §5. 

2. The bond-valence model 

The recently developed bond-valence model allows 
inorganic crystal structures to be analysed in terms of 
the chemical bonding between nearest-neighbour atoms. 
Only the main features are summarized here since a 
full description of the model has been given by Brown 
(1992). 

In the bond-valence model each atom in an inor- 
ganic solid is assigned an atomic valence (positive or 
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negative) which is normally equal to its oxidation state 
and each atom is connected by bonds to those nearest 
neighbours that have valences of opposite sign. Thus, the 
structure is represented by a network of atoms linked by Atomic 
bonds in which atoms with positive valence (cations) are valence Ligand 
bonded only to atoms with negative valence (anions) and A1 3 O 
vice versa. Each atom shares its valence as equally as Ba 2 O 
possible among the bonds it forms, thereby associating Ca 2 o, F 
with each bond a valence, whose sum around any atom Cd 2 O 

Cd 2 S 
is equal to its atomic valence. The bond valences, s, Cl - l  All cations 
determined in this way are found to correlate with the Cs 1 Halogen 
bond lengths, R, according to Cu 1 Halogen 

F - 1 All cations 
s = exp[(Ro - R)/B], (1) Hg 2 S 

K 1 Halogen 
where R,, and B are constants whose values have been Li 1 Halogen 
determined empirically for most pairs of atoms that form Mg 2 O 
bonds. Tabulations are given by Brown & Altermatt, Na 1 Halogen 
(1985) and Brese & O'Keeffe,  (1992). By analogy with 0 -2 All cations 

Rb 1 Halogen 
the Kirchhoff laws for solving electrical networks, the si 4 0 
bond valences can be determined from the bond network Sr 2 o 
using the two network equations, (2) and (3), known, Ti 4 O 
respectively, as the valence sum rule and the equal TI 1 Halogen 
valence rule Zn 2 O 

Zjsij = Vi (2) 
EloopSij = 0, (3) 

where I/, is the valence of atom i, sij is the valence of the 
bond between atoms i and j, and the summation in (3) is 
performed around any closed loop in the bond network. 
The solution to the two network equations corresponds to 
the valence of the atoms being distributed as uniformly 
as possible between the various bonds and, together with 
(1), it gives a unique prediction for the valence and 
length of each bond. 

Equations (1)-(3) can provide a description of the 
geometry of a compound, but only if the bond network 
is known. However, it is not necessary to know the 
full bond network, only the short-range part, that is, 
the first-neighbour bonding environment which can be 
represented by a finite bond graph. First imagine that the 
long-range topology is known and that the structure is 
represented by a bond network that extends indefinitely 
in all directions. Extracting one or two chemical formula 
units from this infinite network requires the breaking of 
bonds, but, by reconnecting pairs of chemically equiv- 
alent broken bonds, a finite bond graph of the kind 
shown in the figures can be created. Although the 
information about the long-range topology, and hence 
the space group, is lost in this graph, the graph preserves 
information about the local environment of each atom, 
i.e. number of bonds it forms and the nature of its nearest 
neighbours. This information is sufficient to determine 
the ideal bond lengths using (1)-(3). 

Since the finite graph involves only the local prop- 
erties of the atoms, it can often be generated using 
simple chemical rules in the same way as the molecular 

Table 1. Average observed coordination numbers and 
bonding strengths in valence units for selected atoms 

(from Brown, 1988) 

Coordination Bonding 
number strength 

5.27 0.57 
10.24 0.195 
7.31 0.274 
6.14 0.326 
4.6 0.43 
6 0.167 

10.4 0.094 
2.2 0.45 
4 0.25 
4.0 0.50 
9.0 0.112 
5.3 0.188 
5.98 0.334 
6.7 0.15 
4 0.50 
9.8 0.102 
4.00 1.00 
8.57 0.233 
5.96 0.67 
8.3 0.120 
4.98 0.402 

diagrams of organic chemistry. For binary compounds 
and ternary compounds with coordination numbers less 
than ,-~8, the observed bond graph can often be correctly 
generated using only the chemical formula together with 
a knowledge of the valences and typical coordination 
numbers of each atom. Cation coordination numbers are 
determined by both size and the bonding characteristics 
of the anions, but it is simpler to start with the assump- 
tion that the coordination number of each cation will 
be close to the average of the coordination numbers 
observed in many different compounds, as given by 
Brown (1988). The initial choice of coordination number 
is not critical, as the constraints encountered during 
the subsequent construction of the bond graph may 
require the coordination to change. From N, the average 
coordination number of an atom, one can make a first 
estimate of the valence S of the bonds it forms using 

s :  V/N. (4) 

S is referred to as the bonding strength of the atom 
and leads to an important theorem, the valence-matching 
principle, which states: 

Since the valence of a bond will be close to the 
bonding strength of both the cation and the anion 
that form the bond, bonds are most likely to form 
between anions and cations with similar bonding 
strengths. 

The average observed coordination numbers and 
bonding strengths of selected atoms are given in Table 1. 

One further principle is needed in constructing 
the bond graph and finding its mapping into three- 
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dimensional space. This is the principle of maximum 
symmetry, which can be written as: 

At each stage in modelling a structure, symmetry is 
only broken when required by either the chemical 
or the spatial constraints. 

In other words, wherever there is a choice to be 
made, the most symmetric solution consistent with the 
constraints should be chosen. 

To construct a bond graph from the chemical formula, 
the bonding strengths S of the atoms are calculated and 
bonds are first drawn between the cations and anions 
with the highest bonding strength, the values of S being 
used to determine the cation coordination numbers. The 
first set of bonds will often link some of the atoms into 
a complex (often an anionic complex) whose bonding 
strength relative to other atoms in the structure can be 
calculated in the same way as the bonding strength of 
an atom. The process is then repeated until the graph 
is complete. At this point the coordination number of 
each atom should be close to its average coordination 
number and the bond valences should be close to the 
bonding strengths of the terminal atoms. The process is 
illustrated in the examples discussed below. 

Once completed, the bond graph can be used to de- 
termine the multiplicity of each chemically distinct atom 
(i.e. the number of times it appears in the bond graph) 
and its maximum possible site symmetry, assigned by 
looking for the most symmetric arrangement of its bonds 
in space. This step is simplified by recognizing that since 
the structure eventually has to be mapped into a space 
group where all atoms will occupy Wyckoff positions, 
only the 32 crystallographic point groups given in Inter- 
national Tables.for Crystallography (1983, Vol. A) need 
be considered. The principle of maximum symmetry 
further implies that bond graphs will be preferred in 
which the coordination environments of the atoms can 
have high crystallographic symmetry, namely the 12- 
coordinate cuboctahedron (m3m), the eight-coordinate 
cube (m3m), the six-coordinate octahedron (m3m), the 
four-coordinate tetrahedron (21.3m) and (less favourably) 
the three-coordinate triangle (62m). Such high site sym- 
metry may not always be attainable and useful listings of 
the subgroups compatible with triangular, tetrahedral and 
octahedral arrangements of bonds are given in Tables 2, 
3 and 4, respectively, together with the elements of the 
site symmetry that the ligands inherit from the central 
atom. 

SrTiO3, which stands as the aristotype* of the large 
class of perovskite and perovskite-related structures il- 
lustrates the way in which the principle of maximum 
symmetry can be used to generate a bond graph. The 
average observed coordination number for Sr 2+ sur- 

* An aristotype Js defined here as a structure with high symmetry thal 
has the same topology as a lower-symmetry observed structure. The 
observed structure can be thought of as derived from the aristotype by 
loss of symmetry through relatively small displacements of the atoms. 

Table 2. Subgroups for trigonal planar coordination 

Column 1 gives the order of the site symmetry of  the central three° 
coordinate atom. Column 2 gives the site symmetry of the central 
atom. Column 3 gives the minimum site symmetries of the ligands, the 
superscript giving the number of  symmetry-related ligands with this 
site symmety. The ligand symmetry may be higher than that shown if 
the ligand also lies on symmetry elements that do not intersect the 
position of the central atom. 

Central atom Minimum site symmetries 
Order site symmetry and multiplicities of the ligands 

12 6 2 m  mm23 

6 32 2 3 
(=  3 / m )  m 3 

3m m 3 
3 3 13 
2 2 2 + 1 2  

m m + l  2 
1 1 1 + 1 + 1  

Table 3. Subgroups for tetrahedral coordination 

For an explanation see Table 2. 

Central atom Minimum site symmetries 
Order site symmetry and multiplicities of the ligands 
24 43rn 3m 4 
12 23 34 
8 ~,2m m 4 
6 3m 3m + m 3 
4 ~, 14 

222 14 
m m 2  m 2 + m 2 

3 3 3 + 1 3  
2 2 I z + I z 

m m + m + l  2 
I 1 1 + 1 + 1 + 1  

rounded by O is 8.57 and for Ti 4÷ is 5.96 (Table 1). The 
bond graph (Fig. 1) is constructed by drawing first the 
strong bonds from Ti [S = 0.67 valence units (v.u.)] to O 
(S = 0.50 v.u.). According to the principle of maximum 
symmetry the T i - -O bonds should be distributed so as 
to leave the three O atoms equivalent. This is achieved 
with the expected coordination number of 6 if Ti forms 
two bonds to each of the three O atoms. 

The way of adding the Sr - -O bonds is less obvi- 
ous and three possibilities are shown in Fig. 1. Eight- 
coordination is close to the average observed coordina- 
tion number of Sr and is compatible with a high site 
symmetry (m3m), providing all the Sr - -O bonds are 
equivalent, but Fig. l(a) shows that this equivalence 
is lost in the bond graph. Nine-coordination, which is 
also close to the average observed coordination number, 
maintains the equivalence of the nine Sr - -O bonds in 
the bond graph (Fig. lb), but there is no crystallo- 
graphic site symmetry that allows all nine bonds to 
be equivalent. Only 12-coordination around Sr allows 
all the bonds to be equivalent in both the bond graph 
and the crystallographic site symmetry. Fig. l(c) shows 
the preferred (and observed) bond graph in which the 
maximum possible point symmetry of Sr is m3m. The 
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Table 4. Subgroups for octahedral coordination 

For  an explanation see Table 2. 

Central atom Minimum site symmetries 
Order site symmetry and multiplicities of the ligands 

48 m3m 4mm 6 
24 432 46 

m3 mm26 
16 4 /mmm 4mm 2 + mm24 
12 3m m 6 

23 13 4" 13 
8 3,2m 42 + 24 

42 4" m 4 
422 42 + 24 
4mm 42 4. m 4 
4 /m  42 + m 4 
mmm mm22 4- m 4 

mm22 4- mm22 + mm22 
6 32 16 

16 
4 4 14.14.14 

4 44-44-  14 
222 22 + ! 4 

22 4. 22 4- 22 
mm2 mm2 + mm2 + 14 

m 2 + m 2 + m 2 

2/m m 2 -4- 14 
m 2 + m  2 +22 

3 3 13 4. 13 
2 2 2 + 2 + 1 2 + 1 2  

m m + m + 1 2 + l  2 
m + m + m + m +  12 

1 1 1 + 1 + 1 + 1 + 1 + 1  

bond graph is completed using (2) and (3) to predict the 
bond valences and (1) to convert these to the chemically 
ideal bond lengths shown in Fig. 1. 

This example shows how, in favourable cases, many 
of the properties expected for a structure, e.g. the bond 
graph, the coordination numbers, the ideal bond lengths 
and the ideal site symmetries of the atoms, can be 
determined from a bond-valence analysis of the chemical 
formula. According to the principle of maximum sym- 
metry, one would expect these properties to be preserved 
as the bond graph is mapped into the crystal structure, 
although spatial constraints and electronic affects such 
as stereoactive lone pairs may require a lowering of the 
site symmetry of the atoms and a consequent straining 
of the bonds. 

Shubnikov (1922), in his fundamental law of crys- 
tallography, pointed out that every atom in the formula 
unit (bond graph) of a crystal must occupy a general or 
special position (Wyckoff position) in one of the 230 
three-dimensional space groups listed in International 
Tables for Crystallography (1983, Vol. A), but atoms of 
the bond graph can only be mapped into the Wyckoff 
positions of a space group if the atoms and Wyckoff 
positions have compatible multiplicities and symmetries. 
For example, the graph of SrTiO3 shown in Fig. 1 (c) re- 
quires a space group with at least two Wyckoff positions 
of multiplicity 1 to accommodate the Sr and Ti atoms and 
one Wyckoff position of multiplicity 3 to accommodate 
the three O atoms. Further, the maximum site symmetry 
allowed by the bond graph for Sr (12-coordinate cuboc- 
tahedron) and Ti (six-coordinate octahedron) is m3m. 
The ideal space group is therefore one which has at 
least two Wyckoff positions of multiplicity 1 with site 
symmetry m3m and at least one site of multiplicity 3. 
The space group Pm3m (space-group number 221) is 
the only one that meets these conditions and it is the 
space group in which SrTiO3 crystallizes. 

The properties of the space groups, in particular the 
multiplicities and site symmetries of the various Wyckoff 
positions, are listed in International Tables for Crys- 
tallography (1983, Vol. A). However, for the purpose 
of embedding the bond graph into the space group a 
different set of multiplicities is needed, since symmetry 
elements that contain translations (lattice translations, 
glide planes and screw axes) do not give rise to special 
positions and therefore do not impose any constraints 
on the Wyckoff positions. All translational elements are 
therefore ignored and only the pure rotational and in- 
version operators are retained. These operations define a 

7o,  
S " 02 Ti Sr ~ O Ti 

(6 /m)~  O1 (~4~/mmm) ( 3 m ) ~ o A m )  

{32} {201} 

(a) (b) 

3. Crystallographic constraints 
Crystallographic constraints appear when the finite bond 
graph is mapped into an infinite three-dimensional crys- 
tal. While it should be possible to map most bond graphs 
into the space group PI, the principle of maximum 
symmetry suggests that the highest, not the lowest, 
symmetry space groups will be preferred and that the 
space group P1 will only be adopted if it is impossible 
to map the structure into any space group of higher 
symmetry. 

{201} 

(c) 

Fig. 1. Possible bond graphs of SrTiO3 showing the spectrum of 
the bond graph, predicted bond lengths in A, and maximum site 
symmetry: (a) eight-coordinate Sr; (b) nine-coordinate Sr: (c) 12- 
coordinate Sr. 
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portion of the unit cell, in general, smaller than the prim- 
itive cell but larger than the asymmetric unit, in which 
the Wyckoff (a) position usually has a multiplicity of 1. 
For example, if the translational symmetry elements of 
the space group Fddd (70) are ignored, the multiplicities 
given in International Tables for Crystallography (1983, 
Vol. A) are all divided by 8. In this case the multiplicity 
of the (a) site is not 8, as given in International Tables for 
Crystallography (1983, Vol. A), but 1. Unless otherwise 
stated, the term 'multiplicity' is used only in this sense 
in the rest of this paper. 

The non-translational order of a space group (O0 is 
defined here as the number of symmetry-related atoms 
generated by the non-translational symmetry operations. 
It is, therefore, equal to the general position multiplicity 
(in the sense defined above). The order of the site symme- 
tO' of a Wyckoff position (Ow) is defined as the number 
of ways these same symmetry operations transform the 
site into itself. Since the symmetry operations that do 
not transform a Wyckoff position into itself are used to 
generate the symmetry-related sites, the product of the 
order of the site symmetry of a Wyckoff position and its 
multiplicity (Mw) is equal to the non-translational order 
of the space group 

MwOw = 0.,.. (5) 

An important corollary of this equation is that atoms 
occupying sites of the same multiplicity must have 
crystallographic site symmetries of the same order. This 
places severe restrictions on the symmetries of the sites 
that can be occupied. In the hypothetical bond graph of 
MgSiO3, shown in Fig. 2, the Si atom has been given 
its expected coordination number of 4 (see Table 1), 
destroying the equivalence of the three O atoms and 
breaking them into two groups, O1 and 02, with Si 
bonded to two atoms of each group. The highest site 
symmetry for a tetrahedron with two inequivalent pairs 
of ligands can be found from Table 3, which shows 
that most site symmetries compatible with tetrahedral 
coordination require all four, or at least three, ligands 
to be crystallographically equivalent. The bond graph of 
Fig. 2 is only compatible with site symmetries mm2 and 
2 (ligand multiplicities 2 + 2), m (ligand multiplicities 
1 + 1 + 2) or 1 (ligand multiplicities 1 + 1 + 1 + 
1). The principle of maximum symmetry requires that 
we choose the highest of these site symmetries, mm2. 
Table 3 then shows that the ligands O1 and 02  must 
each lie on one of the mirror planes and hence have 
site symmetries of at least m.t Since the order of mm2 
is 4, the space group cannot have a non-translational 
order greater than 4. Assuming, following the principle 
of maximum symmetry, that the non-translational order 
is 4, (5) shows that O1 must have a site symmetry of 
the order 2, hence, from Table 3, its site symmetry can 

t Their site symmetry may be higher than this, but in any case it 
must include the mirror plane that passes through Si. 

only be m, while 02  must have a site symmetry of 
the order 4, thus its site symmetry can only be mm2 
or 2/m (International Tables for Crystallography, 1983, 
Vol. A). Since Mg has the same multiplicity as Si, its 
site symmetry will also be of the order 4 which, from 
Table 4, shows that its site symmetry must be 4, 4, 222, 
mm2 or 2/m. However, only mm2 and 2/m allow O1 to 
have the site symmetry m determined above. 

As an assistance to finding space groups with match- 
ing Wyckoff multiplicities, Galiulin & Khachaturov 
(1994) proposed using a space-group spectrum con- 
sisting of a list of ten numbers, giving the number 
of crystallographically distinct atoms that can be ac- 
commodated in Wyckoff positions having multiplicities 
of 1, 2, 3, 4, 6, 8, 12, 16, 24 and 48, respectively. 
For example, the spectrum of Pm3m is {2020***0**}, 
since it can accommodate two atoms each in sites of 
multiplicity 1 and 3, none in sites of multiplicity 2, 4 
and 16 and an indefinite number in sites of multiplicity 
6, 8, 12, 24 and 48, the latter sites having free positional 
parameters which allow them to accommodate more 
than one crystallographically distinct atom. A list of the 
spectra of all 230 space groups in order of decreasing 
symmetry is given in the Appendix, together with the site 
symmetries of the Wyckoff positions of multiplicity 1. 

A spectrum can also be written for the bond graph of 
a compound. For SrTiO3 the spectrum is {2010000000}, 
or {201} if the trailing zeros are omitted, since its bond 
graph (Fig. lc) contains two atoms of multiplicity 1 (Sr 
and Ti) and one of multiplicity 3 (O). A space group will 
have Wyckoff positions of the right multiplicity if the 
numbers in its spectrum are at least as large as the cor- 
responding numbers in the spectrum of the bond graph. 
Examination of the space-group spectra in the Appendix 
shows, for example, that SrTiO3 cannot crystallize in 
either of the space groups Im3m or Fm3m as their spectra 
do not match. Im3m can only accommodate one atom in 
Wyckoff positions of multiplicity 1 and Fm3m has no 
positions of multiplicity 3. The Appendix can therefore 
be used to reduce the list of candidate space groups to 
those wh.ose spectra match the spectrum of the bond 
graph. 

Returning to the example of MgSiO3 shown in Fig. 
2, the search for a space group is narrowed to one 
with non-translational order 4, a spectrum compatible 
with {31} and site symmetries of mm2 (for Si), mm2 
or 2/m for Mg and O1, and m for 02. There are 15 

O1 

g ~  02 J Si 

(m3m) O1 (ram2) 
{31} 

Fig. 2. The predicted bond graph of MgSiO3. 
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matches to be found using the Appendix and Interna- 
tional Tables for Crystallography (1983, Vol. A). These 
must be individually examined to see which, if any, 
can accommodate the bond graph. This examination is 
not trivial as there are many parameters that need to 
be chosen to complete the mapping in low-symmetry 
space groups. However, the analysis shows that either 
the crystal has low symmetry (non-translational order of 
4 or less) or that it has a different bond graph, possibly 
containing more than one formula unit. In fact, MgSiO3 
crystallizes in the pyroxene structure with a doubled 
formula unit, Mg2Si206, and a different bond graph, 
suggesting that there is no satisfactory embedding for 
the bond graph of Fig. 2. 

In the above analysis it has been assumed that the 
bond graph contains only one formula unit, as implied 
by the principle of maximum symmetry. However, struc- 
tures such as pyroxene are known in which the graph 
contains more than one formula unit. In some of these 
cases the multiplicities of the atoms may have a common 
factor higher than 1. For a complete analysis such 
multiple formula unit graphs also should be examined, 
but they will generally have lower symmetry than the 
simple structures, since the quantity that measures the 
degree of symmetry is the non-translational order of the 
space group divided by the highest common factor of the 
multiplicities. In the interests of brevity, such multiple 
structures are not systematically examined here. 

4. Mapping the bond graph into the space group 

The previous section shows how the multiplicities and 
the coordination environments of atoms in the bond 
graph place severe restrictions on the space groups into 
which the graph can be embedded, but finding a space 
group that matches the multiplicity and symmetry of 
the atoms does not guarantee that an embedding is 
possible. Several further conditions must be satisfied. 
The lattice parameters and the coordinates of the atomic 
positions must be chosen in such a way that the expected 
bonds can be formed without bringing two anions or 
two cations into too close contact or leaving large open 
spaces in the structure. Some space groups will generate 
structures that are only connected in two-dimensions 
(layer structures) or one-dimension (fibrous structures) 
and there may be chemical reasons for passing over these 
in favour of a three-dimensionally connected structure. 
Not only must the expected bonds be formed, but their 
lengths should correspond to the lengths predicted by the 
network equations. Some bond strain is allowed, but if 
deviation between the ideal and observed bond lengths 
is too large, the structure will be unstable and will either 
not exist or will distort by lowering the symmetry. 

For high-symmetry structures the number of free 
parameters that need to be chosen is usually small and a 
satisfactory model, if one exists, can easily be found. As 

the symmetry is lowered, the number of free parameters 
increases, making it more difficult to find an embedding. 
The problem may be approached in two ways. Each 
candidate space group may be examined in turn and 
parameters chosen by trial and error, to see if a fit can be 
found, or the topology can be systematically expanded, 
starting at one of the atoms and taking explicit account of 
the chemical and symmetry constraints at each step. Both 
approaches break down at the lowest symmetries, where 
symmetry provides few constraints and the number of 
free parameters becomes large. For the large number of 
compounds that can form no high-symmetry structures, 
a different, as yet undiscovered, approach is needed. 

It is easy to select the parameters for the perovskite 
structure of SrTiO3, because its high symmetry allows 
only one adjustable parameter, the cubic lattice param- 
eter, a. Even though there are two possible ways of 
assigning the atoms to Wyckoff positions, only one gives 
the correct bond graph and all the atom coordinates 
are fixed by symmetry. The single adjustable parameter 
must be chosen to fit at least two chemical constraints, 
namely the Sr---O and the Ti---O bond lengths. In 
general this cannot be done, as the Sr - -O bond must 
be equal to a/2 I/2 and the Ti---O bond must equal 
a/2. By chance, both these conditions are satisfied for 
SrTiO3 where the Sr- -O bond (valence = 2/12) is 
predicted to have a length of 2.78 A, and the Ti---O 
bond (valence = 4/6) is predicted to have a length 
of 1.96 /~, leading to predictions for a of 3.93 and 
3.92 /~, respectively (observed 3.90 A,). However, this 
relationship between the bond lengths is not satisfied 
for BaTiO3 and CaTiO3, since Ba and Ca are larger and 
smaller, respectively, than Sr. The Ba and Ca compounds 
accommodate the strain by distorting. The topology is 
essentially retained but, because the crystallographic 
symmetry is lowered, some bonds are broken and bonds 
that were equivalent in Pm~3m are no longer equivalent 
in the lower-symmetry space group. While the cubic 
perovskite structure remains the aristotype for a large 
group of AB03 compounds, in almost all cases the 
failure of the ideal bond lengths to obey the geometric 
constraints leads to a lowering of the symmetry, as 
discussed in some detail by Woodward (1997a,b). 

The approach described above can be used to derive 
many of the standard structure types in a systematic 
way, as shown in the examples that follow, but where 
a compound is found to adopt a structure of lower 
symmetry than that suggested by the analysis it is 
instructive to enquire after the cause. It may be the result 
of lattice strains, as in the example of the perovskites 
given above, or it may be electronic in origin, such as 
the Jahn-Teller distortion found around Cu 2÷ or the lone- 
pair effect found around Pb 2÷. An ideal structure derived 
using the above analysis thus provides a reference to 
which the observed structure can be compared, helping 
to identify the various chemical or spatial constraints 
that are at work in the crystal. 



I. D. B R O W N  387 

5. Examples 

The ideas developed above are illustrated by a number of 
examples which show how the chemical  and spatial con- 
straints combine to restrict, or in some cases determine, 
the possible structure. 

5.1. NaCl, CsCl and ZnO 

The simplest compounds are the binary salts which 
crystallize in the NaC!, CsC1, sphalerite and wurtzite 
(ZnO) structure types and whose bond graphs, including 
the spectra, maximum site symmetries and ideal bond 
lengths are given in Fig. 3. According to the principle 
of maximum symmetry,  only coordination numbers of 4, 
6, 8 and 12 need initially be considered. The Appendix is 
searched for space groups with spectra compatible with 
{2} and site symmetries of m3m (six-, eight- and 12- 
coordination) or 43m (four-coordination). Matches for 
m3m symmetry  are found in only two space groups, 
Fm3m (225) and Pm3m (221), which generate the NaC1 
and CsC1 structures with coordination numbers of 6 and 
8, respectively. Matches for 43m symmetry  are found in 
two other space groups, Fd3m (227) and F2~3m (216), 
which correspond to the NaT1 and sphalerite structures, 
respectively. The first of these has eight-coordination, 
but the ligands of each atom consist of four cations and 
four anions at the same distance, an arrangement that 
is only l ikely to be found in intermetallic compounds. 
F543m gives a structure with tetrahedral coordination. 
As Niggli  (1918-1919) pointed out, these are the only 
possible simple cubic structures with the formula AB 
and none has coordination number 12. The structure 
adopted by a given compound will depend on its average 
observed coordination number. Examples of a number of 
binary compounds are shown in Table 5, which compares 
the observed lattice parameters with those calculated 
using (1)-(3). Only structures for which bond-valence 
parameters for (1) are available are included in this table. 

Although ZnO is known with the sphalerite structure, 
it normally crystallizes with the hexagonal wurtzite 
structure which can be found by continuing the search to 
lower-symmetry space groups. The next lowest subgroup 
for the site symmetry  of tetrahedrally coordinated Zn is 

2.88 3.56 
N a ~ C l  C s ~ C I  

(m3m) (m3m) (m3m) (m3m) 

{2} {2} 

(a) (b) 

1.96 
Z n ~ O  

(43m) (43m) 

{2} 

(c) 

Fig. 3. Bond graphs of AB compounds: (a) NaCI, (b) CsCI and (c) ZnO. 

Table 5. Predicted and observed lattice parameters 

The lattice parameters are calculated from the predicted bond lengths 
shown in the table and on the figures. All distances are in A. The 
selection of compounds is determined by the availability of the bond- 
valence parameters needed in (1). 

Bond a 
length (calculated) 

CsCl-type Pm3m 
CsCI 3.56 4.11 
TU 3.59 4.14 

NaCl-type Fm3m 
LiF 2.02 4.04 
NaF 2.34 4.68 
KF 2.66 5.32 
NaCI 2.88 5.76 
KCI 3.18 6.36 
RbCI 3.32 6.64 
MgO 2.10 4.20 
CaO 2.37 4.74 
SrO 2.52 5.04 
BaO 2.69 5.38 
CdO 2.31 4.62 

Sphalerite F43m 
ZnO 1.96 4.53 
CdS 2.56 5.92 
HgS 2.56 5.92 

Wurtzite P63mc 
ZnO 1.96 3.22 (a)* 

5.23 (c)* 

Average observed 
a coordination number 

(observed) (from Table 1) 

Cation coordination = 8 
4.12 10.4 
4.20 8.3 

Cation coordination = 6 
4.02 5.3 
4.62 6.7 
5.35 9.0 
5.64 6.7 
6.29 9.0 
6.58 9.8 
4.21 5.98 
4.81 7.31 
5.16 8.57 
5.52 10.24 
4.70 6.14 

Cation coordination = 4 
4.62 4.98 
5.83 4.6 
5.86 4.0 

Cation coordination = 4 
3.25 4.98 
5.21 

Corundum R3c Cation coordination = 6 
AI203 1.88 4.60 (a)* 4.76 5.27 

13.00 (c)* 13.00 

Fluorite Fm3m Cation coordination = 8 
CaF 2 2.36 5.45 5.46 7.31 

Anatase 141/amd Cation coordination = 6 
TiO 2 1.96 3.92 (a)* 3.78 5.96 

7.98 (c)* 9.49 

Rutile P42mnm Cation coordination = 6 
TiO 2 1.96 4.73 (a)* 4.59 5.96 

2.77 (c)* 2.96 

Perovskite Pm3m Cation coordinations = 6 and 12 
SrTiO 3 1.96 (Ti) 3.92 3.90 5.96 

2.78 (Sr) 8.57 

* Lattice parameters calculated assuming a regular cation coordination 
sphere. 

23 (order 12, see Table 3), which yields five matching 
space groups but no new structures. In order 8, where 
the point group of Zn is 42m, there are ten match- 
ing space groups which generate two new structures, 
one a layer structure with square-planar coordination 
[P42/mcm (132)] and one a fibrous structure with l inear 
two-coordination [P4/nmm (129)]. A new tetrahedrally 
coordinated structure only appears in the space groups of  
non-translational order 6 with Zn site symmetry  3m and 
the first matching space group listed in the Appendix is 
P63mc (186), the space group of the wurtzite structure 
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(Table 5). This analysis illustrates just how restrictive 
the spatial requirements can be. Only three simple non- 
metallic binary AB structures, one for each coordination 
number, are compatible with the 68 highest-symmetry 
space groups. Only if the search is continued further 
does the wurtzite structure appear, but even this ap- 
parently high-symmetry structure already has three free 
parameters and two formula units in the primitive unit 
cell. 

Other AB structures are, of course, possible and 
will be found for compounds such as CuO and PbO, 
where electronic effects are expected to reduce the site 
symmetries or where the bond graph contains more than 
one formula unit. However, the failure of an AB structure 
to crystallize in one of the simple high-symmetry forms 
is a warning that additional constraints are present. 

5.2. A1203 
Two possible bond graphs of A1203 are shown in 

Fig. 4. A1 with an average coordination number of 
5.26 can be either six- or four-coordinated and each 
of these possibilities will be considered. First consider 
six-coordination, which is favoured because it not only 
gives a high-symmetry graph (Fig. 4a), but also because 
it results in A1---O bonds exactly equal to 0.50 v.u., 
the bonding strength of O. The spectrum of this graph 
is {011 }, which means that the orders of the crystal- 
lographic site symmetries of A1 and O are in the ratio 
3:2 and, according to (5), the non-translational order of 
the space group must be a multiple of both 3 and 2. If 
the symmetry of the bond graph is to be maintained in 
the crystal, the possible space groups are restricted to 
those of non-translational order 48, 24, 12 and 6, and 
the site symmetries of A1 are restricted to those listed 
in Table 4 with orders 24, 12, 6 and 3. There are no 
matching spectra in the Appendix for space groups with 
non-translational order 48 and only one, Pn~3m (224), of 
order 24 that has a site symmetry for A1 of 23 or 3m.* 
This, like the four matching space groups of order 12 
(all cubic) and the two matching cubic space groups of 
the order 6, describe a defect fluorite structure in which 
the octahedral environment of A1 is distorted. A number 
of cubic phases of A1203 are known (Zhou & Snyder, 
1991), but these are disordered defect spinel structures 
that are best thought of as intermediate stages along 
the dehydration reaction pathway of A1OOH. Because 
they are disordered and the Wyckoff positions are not 
fully occupied, these phases cannot be found by the 
present method. There are eight matching hexagonal 
space groups of the order 6, but these all give struc- 
tures with columns of face-sharing octahedra or trigonal 
prisms in which the cation--cation repulsions across the 
shared faces would lead to excessive strain. Not until 

* Since only the site symmetries of the positions of multiplicity 1 are 
given in the Appendix, it is necessary to consult International Tables 
for Crystallography (1983, Vol. A) to obtain this information. 

R3c (167) does one reach the observed space group 
of corundum, c~-A1203, whose calculated and observed 
lattice parameters are given in Table 5. Even though each 
A106 octahedron shares one face with a neighbour, the 
structure is possible because the A1 atoms are small and 
can move away from the shared face, but if A1 is replaced 
by a larger cation face sharing is no longer possible. In 
this case the bixbyite structure is found. Even though 
bixbyite is cubic, its space group la3 has the same non- 
translational order as R3c, but the structure has a lower 
symmetry than corundum since its bond graph contains 
two, not one, formula units. 

An analysis of the tetrahedral graph of 
A1203 illustrated in Fig. 4(b) shows why a high- 
symmetry tetrahedrally coordinated structure is unlikely. 
The spectrum is { 12} and the multiplicity, 2, of the 
A1 atom requires that the non-translational order of the 
space group be twice the order of the site symmetry 
of A1. Further, since the bond graph shows that the 
A1---O2 bond is not equivalent to the three A1--O1 
bonds, the site symmetry of A1 must allow for at 
least one crystallographically inequivalent bond. Table 
3 shows that the only site symmetries for A1 with 
this property are 3m (order 6), 3 (order 3), m (order 
2) and 1 (order 1). Thus, only space groups with 
non-translational order 12, 6, 4 and 2 need to be 
considered. There are matches for five space groups 
of non-translational order 12, but all of these require 
A1 and 02  to lie on the same threefold axis and O1 to 
lie on a parallel threefold axis, an arrangement which 
gives a double-layer structure related to those found 

A1 O AI 

( m 3 m ) ~ m ) ~ o / ~ m )  
{Oll} 

(a) 

AI - -  02 AI 

( 3 m ) ~  O1 ~ ~ ( 3 m )  

112} 

(b) 

Fig. 4. Bond graphs for A1203: (a) six-coordinate and (b) four- 
coordinate. 
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in layered silicates. This is a possible structure, but 
layer structures result in anion-anion contacts between 
the layers, a condition that is not favoured by small 
non-polarizable anions such as oxygen. Space groups 
of non-translational order 6 lead to similar structures. 
There are, however, many matching space groups of 
non-translational order 4 and 2 and, although it is 
possible that an embedding of the graph might be found 
among these, symmetry no longer provides enough 
constraints to guide the way. We can conclude that if 
tetrahedral A1203 exists and it does not have a layer 
structure, it will form a structure in a space group of 
non-translational order 1, 2 or 4 or it will have a more 
complex bond graph than that shown in Fig. 4(b). 

5.3. CaF2, Ti02, CdCl2, Cdl2 and CaCl2 
The simple binary AB2 compounds represented by 

CaF2, in which the Ca is eight-coordinated, and TiO2, 
CdC12, CdI2 and CaC12 in which the cation is six- 
coordinated, have one of the bond graphs shown in 
Fig. 5. Both graphs have the same spectrum, { 11 }, and 
the same maximal site symmetry around the cation 
(m3m, order 48), but only CaF2 has a compatible sym- 
metry around the anion (43m, order 24). 

The search for candidate space groups for CaF2 starts 
with space groups of non-translational order 48 and 
immediately yields a match with Frn3m (225), which is 
the observed space group. The calculated and observed 
lattice parameters are given in Table 5. 

In the bond graph of TiO2, representing the six- 
coordinate structures, the maximum symmetry around 
three-coordinate O is 62m (order 12, see Table 2), 
implying that the order of the site symmetry of Ti, and 
the non-translational order of the space group, cannot 
exceed 24. The highest site symmetry of Ti is, therefore, 
432 or rn3 (Table 4), but the two matching space groups 
with this order yield only the CaF2 structure and the 
l0 of the order 12 give either tetrahedral coordination 
around Ti or one of the layer structures, CdC12 (R3m, 
166) or CdI2 (P3ml, 164), which are stabilized by the 
more polarizable halide ions. Layer structures are not 
expected for TiO2, making it necessary to look further to 
space groups of non-translational order 8, where the first 
matching space group I41/amd (141) is the space group 
of the anatase form of TiO2. The next two space groups 
listed in the Appendix, I4/mcm (140) and P42/nmc (137), 
provide matching Wyckoff positions, but do not allow an 

embedding of the graph. However, the following space 
group does and P4e/mnm (136) is the space group of the 
rutile polymorph which has the same topology as the 
lower symmetry CaCI2. Although the anatase and rutile 
structures of TiO2 can thus be readily derived, neither 
symmetry arguments nor the calculated lattice constants 
shown in Table 5 would suggest that rutile is stabilized 
by its higher density, nor would these arguments suggest 
the existence of the low-symmetry polymorph brookite, 
which has the space group Pbca (61, non-translational 
order 2). Significantly, brookite is only stabilized by the 
presence of impurities. 

5.4. Ca3AI2(Si04)3 
The formula Ca3A12(SiO4)3 seems an unlikely candi- 

date for a high-symmetry structure, but a high-symmetry 
bond graph can be drawn if Ca and Si have coordination 
numbers 4 or 8 and AI coordination number 6 (Fig. 6). 
Equation (5) shows that the site symmetry orders of 
Ca, A1 and Si cannot be larger than 16, 24 and 16, 
respectively. No space groups with non-translational 
order 48 or 24 match both the spectrum {0120001} and 

2.36 1.96 
F " - ~  Ca ~ F O ~  Ti ~ O  

(m3m) ( ?/.3m ) (m3m) (62m) 

{11} {11} 

(a) (b) 

Fig. 5. Bond graphs of AB2 structures: (a) CaF2 and (b) TiO2. 

(m3m) 

{0120001} 

Fig. 6. The bond graph of Ca3AI2(SiO4)3. 

(m3m) (4~3m) 
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the symmetry, and only in order 12 is there a matching 
space group, l a 3 d  (230), which can also accommodate 
the bond graph. Because the O atom in this space group 
occupies the general position, the structure has four free 
parameters [a, x(O), y(O), z(O)], which must be matched 
to the constraints provided by the Ca---O, A1-----O and 
Si---O bond lengths and the expected tetrahedral angles 
at Si. Although the structure is technically overdeter- 
mined, it is still able to accommodate a range of different 
cations without distorting to a lower symmetry. 

6 .  D i s c u s s i o n  

The above discussion shows that both the chemical 
and the spatial constraints play an important role in 
deciding which structures, and hence which compounds, 
can exist. The need to match the chemical properties 
of an inorganic compound with the crystallographic 
properties of the space into which it is to be mapped 
provides severe constraints on the possible topologies 
that can be adopted. The relationship between the non- 
translational order of the space group and the multiplicity 
and site symmetry of the Wyckoff positions given by 
(5), when combined with the multiplicities and site 
symmetries predicted by the bond graph, reduces to a 
relatively manageable size the number of space groups 
that need to be considered. Not all these candidate space 
groups will allow an embedding of the bond graph 

and, even where they do, it may not be possible to 
choose structural parameters that reproduce the predicted 
interatomic distances. 

In favourable cases, however, this analysis does allow 
the local topology described by the bond graph to be 
unambiguously expanded into a high-symmetry three- 
dimensional structure. In other cases it will generate a 
small number of structures, e . g .  layer and framework 
structures, which can be examined for their chemical 
plausibility. In still other cases, no structures of high 
or moderate symmetry will be found and, although it is 
not then possible to determine the structure directly, the 
reasons for the low symmetry are clear and the number 
of space groups that need to be considered is severely 
limited. 

In some cases the analysis can provide a reference 
structure with which the observed structure can be 
compared. The failure of a compound to crystallize 
in the structure with the highest possible symmetry 
suggests that there are features of the structure or the 
chemistry that have been overlooked. For example, 
BaTiO3 and CaTiO3 do not crystallize in the space 
group P m 3 m  because of lattice strain and TiO2 does not 
crystallize with the CdC12 structure because of the low 
polarizability of the O atoms. Contrary to expectation, 
it is not necessary to ask why CdC12 does not adopt the 
rutile structure since the CdCI2 is the structure of higher 
symmetry. 

A P P E N D I X  

S p a c e - g r o u p  s p e c t r a  

Spectra for all space groups arranged in order of decreasing symmetry. The symmetries of sites with multiplicity 1 are given at 
the end of each line followed by structure types that crystallize in the space group. (Site symmetries in parentheses refer to 
positions of multiplicity 2.) 

S p a c e  g r o u p s  o f  n o n - t r a n s l a t i o n a l  o r d e r  4 8  

1 2 3 4 6 

229 Im3m 1 0 1 1 * 
225 F m 3 m  2 1 0 0 * 
221 P m 3 m  2 0 2 0 * 

S p a c e  g r o u p s  o f  n o n - t r a n s l a t i o n a l  o r d e r  2 4  

1 2 3 4 6 

227 F d 3 m  2 2 0 * * 
226 Fm3c  2 0 2 0 * 
224 Pn3m 1 2 1 * * 
223 Pm3n  1 0 1 1 * 
222 Pn3n 1 0 ! 1 * 
217 12~3m I 0 1 * * 
216 F2~3m 4 0 0 * 8 
215 P 4 3 m  2 0 2 * * 
211 1432 1 0 i 1 * 
209 F432 2 1 0 0 * 
207 P432 2 0 2 0 * 
204 lm3 1 0 1 1 * 
202 Fro3 2 1 0 0 * 
200 Pm3 2 0 2 0 * 
191 P6 / m m m  2 * 2 * * 

Site 
8 12 16 24 48 symmetry Example 
* * 0 * * m 3 m  
* * 0 * * m3m NaCI, CaF 2 
* * 0 * * m 3 m  CsCI, SrTiO 3 

Site 
8 12 16 24 symmetry 
0 * 0 * ,~3m 
• * 0 * 432, m3 
0 * 0 * 43m 
• * 0 * m3 
• * 0 * 432 
0 * 0 * 43m 
0 * 0 * z~3m 
0 * 0 * 43m 
• * 0 * 43 
• * 0 * 43 
• * 0 * 43 
• * 0 * m3 
• * 0 * m3  
• * 0 * m3 
0 * 0 * 6 / m m m  

Example 
NaTI 

ZnS 
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A P P E N D I X  ( c o n t . )  

S p a c e  g r o u p s  o f  n o n - t r a n s l a t i o n a l  o r d e r  16  

Site 
1 2 3 4 6 8 12 16 s y m m e t r y  

139 1 4 / m m m  2 * 0 * 0 * 0 * 4 / m m m  

123 P 4 / m m m  4 * 0 * 0 * 0 * 4 / m m m  

S p a c e  g r o u p s  o f  n o n - t r a n s l a t i o n a l  o r d e r  12  

Site 
1 2 3 4 6 8 12 s y m m e t r y  

230 la3d 0 2 2 * * 0 * (3, 32) 
228 Fd3c 1 2 1 * * 0 * 23 
219 F43c  2 0 2 * * 0 * 23 
218 P43n 1 0 3 * * 0 * 23 
210 F4132 2 2 0 * * 0 * 23 
208 P4232 1 2 3 * * 0 * 23 

203 Fd3 2 2 0 * * 0 * 23 
201 Pn3 1 2 1 * * 0 * 23 
197 I32  1 0 0 * * 0 * 23 
196 F23  4 0 0 * * 0 * 23 
195 P23 2 0 2 * * 0 * 23 
194 P 6 3 / m m c  4 * * 0 * 0 * 3m, 62m 

193 P 6 3 / m c m  2 * * * * 0 * 3m, 62m 
192 P 6 / m c c  2 * 2 * * 0 * 62, 6 / m  

189 P62m 2 * * * * 0 * 62m 
187 P6m2 6 * * 0 * 0 * 62m 
183 P6mm * * * 0 * 0 * 6mm 

177 P622  2 * 2 * * 0 * 622 
175 P 6 / m  2 * 2 * * 0 * 6 / m  

166 R3m 2 * 2 0 * 0 * 3m 
164 P 3 m l  2 * 2 0 * 0 * 3m 
162 P31 m 2 * 2 * * 0 * 3m 

E x a m p l e  

Garne t  

CdCI  2 
CdI  2 

S p a c e  g r o u p s  o f  n o n - t r a n s l a t i o n a l  o r d e r  8 

Site 
1 2 3 4 6 8 s y m m e t r y  

141 141/amd 2 * 0 * 0 * 42m 
140 14 /mcm 4 * 0 * 0 * 422, ~,2m, 4 /m ,  mmm 

137 P42 /nmc  2 * 0 * 0 * 42m 

136 P 4 2 / m n m  2 * 0 * 0 * mmm 
134 P42 /nnm 2 * 0 * 0 * 42m 
132 P 4 2 / m c m  4 * 0 * 0 * 712m, mmm 

131 P 4 2 / m m c  6 * 0 * 0 * ~,2m, mmm 
129 P 4 / n m m  * * 0 * 0 * 42m, 4mm 

128 P 4 / m n c  2 * 0 * 0 * 4 / m  

127 P 4 / m b m  4 * 0 * 0 * 4 / m  
126 P 4 / n n c  2 * 0 * 0 * 42 
125 P 4 / n b m  4 * 0 * 0 * ,~2m, 42 
124 P 4 / m c c  2 * 0 * 0 * 4 /m ,  42 
121 142m 2 * 0 * 0 * 42m 
119 14m2  4 * 0 * 0 * 42m 

115 P4m2 4 * 0 * 0 * 42m 

111 P42m 4 * 0 * 0 * 42m 
107 14mm * * 0 * 0 * 4mm 

99 P4mm * * 0 * 0 * 4mm 

97 1422 2 * 0 * 0 * 42 
89 P422  4 * 0 * 0 * 42 
87 14 /m  2 * 0 * 0 * 4 / m  

83 P 4 / m  4 8 0 * 0 * 4 / m  

71 l m m m  4 * 0 * 0 * mmm 
69 Fmmm 2 * 0 * 0 * mmm 
65 Cmmm 4 * 0 * 0 * mmm 
47 P m m m  8 * 0 * 0 * mmm 

E x a m p l e s  

Ana tase  

Rut i le  
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APPENDIX (cont.) 

S p a c e  g r o u p s  o f  n o n - t r a n s l a t i o n a l  o r d e r  6 

1 2 3 4 6 

213 P4132 2 * * 0 * 
212 P4332 2 * * 0 * 
206 la3 2 * * 0 * 

205 Pa3 2 * 0 0 * 
199 1213 0 * 8 0 * 

- 

190 P62c  4 * * 0 * 
188 P6c2 6 * * 0 * 

186 P63mc * 0 * 0 * 

185 P63 cm * * * 0 * 
184 P6cc * * * 0 * 

182 P6322 4 * * 0 * 
176 P 6 3 / m  2 * * 0 * 
1 7 4  P 6  6 * * 0 * 

1 6 8  P6  * * * 0 * 

167 R3c  2 * * 0 * 
165 P 3 c l  2 * * 0 * 
163 P 3 1 c  4 * * 0 * 
160 R3m * 0 * 0 * 

157 P 3 1 m  * * * 0 * 
156 P 3 m l  * 0 * 0 * 
155 R32 2 * * 0 * 
150 P321 2 * * 0 * 
149 P312  6 * * 0 * 
148 R3 2 * 2 0 * 
147 P3 2 * 2 0 * 

Site 
s y m m e t r y  

32 
32 

(3) 
32 
32 
3m 
3m 
6 
32 
3_,6 
6 
6 
3, 32 
3, 32 
3 , 3 2  
3m 
3m 
3m 
32 
32 
32 

E x a m p l e s  

Bixbyi te  

Wur t z i t e  

C o r u n d u m  

S p a c e  g r o u p s  o f  n o n - t r a n s l a t i o n a l  o r d e r  4 

1 2 3 4 

181 P6422 4 * 0 * 
180 P6222 4 * 0 * 
142 141/acd 2 * 0 * 
138 P42 /ncm * * 0 * 
135 P42 / m b c  4 * 0 * 

133 P42 /nbc  4 * 0 * 
130 P_4/ncc * * 0 * 
122 I 4 2 d  2 * 0 * 
120 I4c2 4 * 0 * 
I 18 P~ln2 4 * 0 * 

117 P4b2 4 * 0 * 

I 16 P4c2 4 * 0 * 
114 P421c  2 * 0 * 

l l 3  P421m * * 0 * 
I 12 P42c  6 * 0 * 

109 I41md * * 0 * 
108 I 4cm * * 0 * 

105 P42mc * * 0 * 
104 P4nc  * * 0 * 
103 P4cc  * * 0 * 

102 P42nm * * 0 * 
lO1 P42cm * * 0 * 
100 P4bm * * 0 * 

98 I4122 2 * 0 * 

94 P422 t 2 2 * 0 * 
93 P4222 6 * 0 * 
90 P4212 * * 0 * 
88 I41 /a  2 * 0 * 
86 P42/n  2 * 0 * 
85 P 4 / n  * * 0 * 
84 P_43/m 6 * 0 * 

82 I 4  4 * 0 * 
81 P 4  4 * 0 * 
79 I4  * * 0 * 

Site 
s y m m e t r y  

222 
222 
- 

4, 222 
4, 2 /m ,  222, ram2 
4, 2 /m ,  222 

4-, 222 
4, 222 

4, 222 
,i, 222 
4, 222 
4, 222 

_-, mm2 
4, 222 
ram2 
4, ~ 2  
~ 2  
4 
4 
~ 2  
ram2 

4, ~ 2  
222 
222 
222 
4, 222 
4 

i 
4 , 4  
2_/m 
4 

4 

Site 
1 2 3 4 s y m m e t r y  

75 P4  * * 0 * 4 
74 lmma  * * 0 * 2 / m 

72 Ibam 4 * 0 * 222 
70 F d d d  2 * 0 * 222 
68 Ccca 2 * 0 * 222 
67 Cmma * * 0 * 2 / m 
66 Cccm 6 * 0 * 222 
64 Cmca 2 * 0 * 2 / m  

63 Cmcm * * 0 * 2 / m  
59 Pmmn * * 0 * mm2 
58 Pnnm 4 * 0 * 2 / m  

55 Pbam 4 * 0 * 2 / m  
53 P m n a  4 * 0 * 2 / m  

51 Pmma * * 0 * 2 /m,  mm2 
50 Pban 4 * 0 * 222 
49 Pccm 8 * 0 * 2 / m  
48 Pnnn 4 * 0 * 222 
44 Imm2 * * 0 * mm2 
42 Fmm2 * * 0 * mm2 
38 Amm2 * * 0 * mm2 
35 Cmm2 * * 0 * ram2 
25 Prom2 * * 0 * mm2 

23 1222 4 * 0 * 222 
22 F 2 2 2  4 * 0 * 222 
21 C222 4 * 0 * 222 
16 P222  8 * 0 * 222 
12 C 2 / m  4 * 0 * 2 / m  

10 P 2 / m  4 * 0 * 2 / m  

S p a c e  g r o u p s  o f  n o n - t r a n s l a t i o n a l  o r d e r  3 

Site 
1 2 3 s y m m e t r y  

198 P213 * 0 * 3 
173 P63 * 0 * 3 
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1 2 3 

161 R3c  * 0 * 
159 P31c * 0 * 
158 P3cl * 0 * 
146 R3 * 0 * 
143 P3 * 0 * 

S p a c e  g r o u p s  o f  n o n - t r a n s l a t i o n a l  o r d e r  2 

1 2 

179 P6522 * * 
178 P6122 * * 
172 P64 * * 
171 P62 * * 
154 P3221 * * 
153 P3z12 * * 
152 P3121 * * 
151 P3112 * * 
110 141cd * * 
106 P4zbc  * * 

96 P43212 * * 
95 P4322 * * 
92 P41212 * * 
91 P4122 * * 
80 141 * * 
77 P42 * * 
73 lbca  * * 

62 Pnma * * 
61 Pbca  2 * 

60 Pbcn * * 
57 Pbcm * * 

S p a c e  g r o u p s  o f  n o n - t r a n s l a t i o n a l  o r d e r  1 

Site 
1 symmetry 

170 P6 s * 1 
169 P61 * 1 
145 P32 * 1 
144 P31 * 1 
78 P43 * 1 

A P P E N D I X  ( c o n t . )  

Site 
symmetry 
3 
3 
3 
3 
3 

Site 
symmetry 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2, i 
m, i 

2, i 
2, i 

56 
54 
52 
46 
45 
43 
41 
40 
39 
37 
36 
34 
32 
31 
30 
28 
27 
26 
24 
20 
18 
17 
15 
14 
13 
11 
8 
6 
5 
3 
2 

76 P41 
33 Pna21 

29 Pca21 

19 P212121 
9 Cc 

Site 
1 2 symmetry 

Pccn * * 2, ] 
Pcca  * * 2, 
Pnna * * 2. ] 
Ima2 * * m, 2 
Iba2 * * 2 

Fdd2 * * 2 
Aba2 * * 2 
Ama2  * * m, 2 
Abm2  * * m, 2 
Ccc2 * * 2 
Cmc21 * * m 
Pnn2 * * 2 
Pba2 * * 2 
Pmn21 * * m 
Pnc2 * * 2 
Pma2  * * m, 2 

Pcc2 * * 2 
Pmc21 * * m 

I212121 * * 2 
C222 * * 2 
P21212 * * 2 
P2221 * * 2 
C 2 / c  * * 2, i 

- 

P 2 1 / c  4 * 1 

P 2 / c  * * 2, i 
P 2 1 / m  * * m, i 
Cm * * m 
Pm * * m 
C2 * * 2 
P2 * * 2 
P i  8 * i 

Site Site 
1 symmetry 1 symmetry 

* 1 7 P c  * 1 

* 1 4 P21 * 1 
* 1 1 P1  * 1 
* 1 

* 1 
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